Metapopulation dynamics for spatially extended predator–prey interactions
نویسندگان
چکیده
Traditional metapopulation theory classifies a metapopulation as a spatially homogeneous population that persists on neighboring habitat patches. The fate of each population on a habitat patch is a function of a balance between births and deaths via establishment of new populations through migration to neighboring patches. In this study, we expand upon traditional metapopulationmodels by incorporating spatial heterogeneity into a previously studied two-patch nonlinear ordinary differential equation metapopulation model, in which the growth of a general prey species is logistic and growth of a general predator species displays a Holling type II functional response. The model described in this work assumes that migration by generalist predator and prey populations between habitat patches occurs via a migratory corridor. Thus, persistence of species is a function of local population dynamics and migration between spatially heterogeneous habitat patches. Numerical results generated by our model demonstrate that population densities exhibit periodic plane-wave phenomena, which appear to be functions of differences in migration rates between generalist predator and prey populations. We compare results generated from our model to results generated by similar, but less ecologically realistic work, and to observed population dynamics in natural metapopulations. 2009 Elsevier B.V. All rights reserved.
منابع مشابه
Stabilization through spatial pattern formation in metapopulations with long-range dispersal
Many studies of metapopulation models assume that spatially extended populations occupy a network of identical habitat patches, each coupled to its nearest neighbouring patches by density-independent dispersal. Much previous work has focused on the temporal stability of spatially homogeneous equilibrium states of the metapopulation, and one of the main predictions of such models is that the sta...
متن کاملThe dynamics of two diffusively coupled predator-prey populations.
I analyze the dynamics of predator and prey populations living in two patches. Within a patch the prey grow logistically and the predators have a Holling type II functional response. The two patches are coupled through predator migration. The system can be interpreted as a simple predator-prey metapopulation or as a spatially explicit predator-prey system. Asynchronous local dynamics are presum...
متن کاملFinite-difference schemes for reaction-diffusion equations modeling predator-prey interactions in MATLAB.
We present two finite-difference algorithms for studying the dynamics of spatially extended predator-prey interactions with the Holling type II functional response and logistic growth of the prey. The algorithms are stable and convergent provided the time step is below a (non-restrictive) critical value. This is advantageous as it is well-known that the dynamics of approximations of differentia...
متن کاملMetapopulation dynamics with quasi-local competition.
Stepping-stone models for the ecological dynamics of metapopulations are often used to address general questions about the effects of spatial structure on the nature and complexity of population fluctuations. Such models describe an ensemble of local and spatially isolated habitat patches that are connected through dispersal. Reproduction and hence the dynamics in a given local population depen...
متن کاملStochastic population dynamics in spatially extended predator-prey systems
Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting manyparticle systems beyond rate equation approximations. Including spatial structure ...
متن کامل